Adaptive submodel selection in hybrid models

نویسندگان

  • Randall Gray
  • Simon Wotherspoon
چکیده

Hybrid modeling seeks to address problems associated with the representation of complex systems using “single-paradigm” models: where traditional models may represent an entire system as a cellular automaton, for example, the set of submodels within a hybrid model may mix representations as diverse as individual-based models of organisms, Markov chain models, fluid dynamics models of regional ocean currents, and coupled population dynamics models. In this context, hybrid modelers try to choose the best representations for each component of a model in order to maximize the utility of the model as a whole. Even with the flexibility afforded by the hybrid approach, the set of models constituting the whole system and the dynamics associated with interacting models may be most efficient only in parts of the global state space of the system. The immediate consequence of this possibility is that we should consider adaptive hybrid models whose submodels may change their representation based on their own state and the states of the other submodels within the system. This paper uses a simple example model of an artificial ecosystem to explore a hybrid model which may change the form of its component submodels in response to their local conditions and internal state relative to some putative optimization choices. The example demonstrates the assessment and actions of a “monitor” agent which adjusts the mix of submodels as the model run progresses. A simple mathematıcal structure is also described and used as the basis for a submodel selection strategy, and alternative approaches are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Electricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average

Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015